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Abstract

In this study, we evaluated the impact of yeast cell wall prebiotics and multispecies probiot-

ics on the gut microbiota, immune response, and growth performance of weaned piglets, as

alternatives to antibiotics as growth promoters (AGPs). A randomized complete block

design was employed, involving 160 piglets divided into four treatment groups during the

nursery phase. The treatments applied throughout the experimental period were as follows:

CONT+ = basal diet with halquinol (AGP); YCW = basal diet with yeast cell wall (cell wall of

Saccharomyces cerevisiae yeast); SIM+ = basal diet with yeast cell wall + multispecies pro-

biotic (Bacillus subtilis (2.0 x 109 CFU/g), Bacillus coagulans (5.0 x 108 CFU/g), Clostridium

butyricum (5.0 x 107 CFU/g), and Bacillus licheniformis (2.0 x 109 CFU/g)); SIM- = basal diet

with yeast cell wall + multispecies probiotic (half dose). The parameters assessed included

daily feed intake, weight gain, feed conversion ratio (FCR), diarrhea score, serum cytokine

levels, and chemokine concentrations, as well as microbiota analysis. During the 21 to 63-

day study period, only FCR differed significantly (p = 0.0076). CONT+ and PREB had supe-

rior FCRs of 1.543 and 1.585, while SIM- had the least favorable FCR at 1.654. At 35 days,

IL-10 levels were greater in the SIM- group, showing a 271.25% increase over those in the

other groups. By 49 days, the IL-8 concentration was lower in the PREB group than in the

CONT+ group, with a reduction of 247%, while the IL-8 concentrations in the SIM+ and SIM-

groups were not significantly different from those in the other groups. The Firmicutes/Bacter-

oidetes (F/B) ratio in the CONT+ group was lower than that in the PREB, SIM+, and SIM-

treatment groups. The Lactobacillaceae family was more abundant in the SIM+ treatment,

followed by the SIM- and PREB treatments. The CONT+ treatment had the lowest abun-

dance. The abundance of the genus Lactobacillus differed between the CONT+ group and

the PREB, SIM+, and SIM- treatment groups. Prebiotics, used either alone or combined

with probiotics, serve as effective substitutes for AGPs, boosting piglets’ health and perfor-

mance throughout the nursery phase.
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Introduction

The weaning of piglets at commercial farms is normally carried out between 21 and 28 days of

age, a process that marks a critical period, especially within the initial two weeks following the

separation from sows [1]. Nevertheless, potential adverse effects may persist throughout the

nursery phase, impacting piglet development [2].

A primary consequence of postweaning stress is a reduction in feed intake. Depending on

the severity and duration, this reduction can impair the functionality of the intestinal barrier.

This impairment is characterized by morphological changes in the intestine, including alter-

ations in villus height and crypt depth [3]. Such intestinal morphophysiological modifications

can disrupt the activity of digestive enzymes, leading to osmotic diarrhea. This condition, cou-

pled with diminished nutrient absorption, facilitates the proliferation of Escherichia coli. Bacte-

ria exploit available substrates for growth, thereby exacerbating digestive disturbances [4].

After weaning, an increase in feed consumption is positively correlated with modulation of the

intestinal microbiota, enhancing organ health. This relationship is critical for promoting the

proliferation of beneficial bacteria, especially by enriching lactobacillus populations and

depleting Clostridium coccoides in the ileum [5].

Therefore, antibiotics as growth promoters (AGPs) have historically been used to mitigate

postweaning challenges. However, recent regulations have curtailed their use due to concerns

over the emergence of antibiotic-resistant bacteria and potential residues in meat [6]. Conse-

quently, this shift has favored the adoption of alternatives such as prebiotics and probiotics,

whose beneficial effects on animal health are increasingly recognized [7–10]. These develop-

ments underscore the importance of nutritional strategies in supporting the intestinal health

and overall well-being of weaned piglets, reflecting a move toward more sustainable and

health-conscious farming practices.

Probiotics confer various benefits to the host’s intestinal health through multiple mecha-

nisms, such as the competitive exclusion of pathogens, the production of antimicrobial sub-

stances, the of enterotoxins, modulation of the host’s immune response, and preservation of

intestinal barrier integrity [11,12]. Similarly, prebiotics enhance gut health by preventing bac-

terial adhesion to the intestinal wall, modulating immunity via antibacterial compounds, pro-

moting secretion within the intestinal lumen, and inducing beneficial morphological changes

in the intestinal structure [13].

Probiotics, prebiotics, and their combination (symbiotic) are recognized for their ability to

modulate the intestinal microbiota, thereby enhancing intestinal health and fostering the

development of both the local and systemic immune systems. This modulation influences pig-

let performance [10,14–19]. Given the multifaceted nature of weaning-related stress and the

diverse range of available probiotics and prebiotics with varying compositions, concentrations,

dosages, and active ingredients, this study aimed to assess the efficacy of a prebiotic, both

alone and in combination with a probiotic, in comparison to that of an AGP. This study

addresses the need for effective alternatives to antibiotic growth promoters in swine produc-

tion by evaluating the combination of prebiotics and probiotics. Our research focuses on sus-

tainable farming practices that prioritize animal health while reducing the risks associated

with AGP use. The focus was on evaluating their effects on the intestinal microbiota and

immune system and their subsequent impacts on the health and performance of piglets during

the nursery phase.
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Materials and methods

All procedures conducted in this study were thoroughly reviewed and approved by the AKEI

Animal Research Ethics Committee for Animal Experimentation under approval number 007/

22. The experiment involved 160 piglets, evenly divided between castrated males and females,

of PIC1 genetics (Camborough x AG 337), which were aged 21 days and had an average live

weight of 5.5 ± 1.0 kg. The experimental design was a randomized complete block (based on

initial animal weight and sex) comprising four treatments with eight replicates each, and the

experimental unit consisted of five animals of the same sex. Throughout the experimental

period (21 to 63 days of age), the animals had ad libitum access to water and feed, and the

nutritional program (Table 1) was divided into four phases: prestarter I (21 to 28 days), pre-

starter II (29 to 35 days), starter I (36 to 42 days), and starter II (43 to 63 days).

The treatments applied throughout the experimental period were as follows: CONT+ =

basal diet with 200 g/ton halquinol (AGP); PREB = basal diet with 1000 g/ton prebiotic; SIM+

= basal diet with 500 g/ton prebiotic + 600 g/ton multispecies probiotic; SIM- = basal diet with

500 g/ton prebiotic + 300 g/ton multispecies probiotic.

The prebiotic derived from the cell wall of Saccharomyces cerevisiae yeast (ImmunoWall1,

ICC, Brazil) consisted of 1,3–1,6 β-glucans (>35%) and mannan oligosaccharides (>19%).

The multispecies probiotic used (Bio4Pro1, PHARTEC SAC, Lima, Peru) contained a blend

of spore-forming strains, including Bacillus subtilis (2.0 x 109 CFU/g), Bacillus coagulans (5.0 x

108 CFU/g), Clostridium butyricum (5.0 x 107 CFU/g), and Bacillus licheniformis (2.0 x 109

CFU/g).

In this study, we evaluated daily feed intake (DFI), daily weight gain (DWG), and the feed

conversion ratio (FCR), and the results are presented for each phase and for the entire experi-

mental period (21 to 63 days). Diarrhea scores were recorded daily and classified as follows:

normal consistency (0), soft (1), pasty (2), and watery (3) [20]. The average diarrhea severity

score was calculated using the following formula:

Average diarrhea severity score
¼ total diarrhea score=total number of animals evaluated over the experimental period:

At 35 and 49 days of age, the levels of serum cytokines and chemokines (IL-1β, IL-4, IL-6,

IL-8, IL-10, IL-12p40, IFN-α, IFN-γ, and TNF-α) were quantified. Blood samples (5 mL) were

collected via jugular vein puncture from one animal per pen (32 animals in total), centrifuged,

and then analyzed for a panel of 9 cytokines using a multiplex immunoassay designed for pigs

(Invitrogen™, EPX090-60829-901). At 35 days of age, fecal samples were collected from the rec-

tum, for one sample per experimental unit, totaling 32 samples, for microbiota analysis. This

evaluation was conducted using a ZR Fecal DNA MiniPrep1 kit from Zymo Research (Mur-

phy Ave., Irvine, CA) following the manufacturer’s recommended protocol for DNA extrac-

tion. The extracted DNA was quantified using spectrophotometry at 260 nm, and its integrity

was assessed through electrophoresis on a 1% agarose gel. A segment of approximately 460

bases from the hypervariable V3-V4 region of the 16S rRNA ribosomal gene was amplified

using universal primers under the following PCR conditions: 95˚C for 3 minutes; 25 cycles of

95˚C for 30 seconds, 55˚C for 30 seconds, and 72˚C for 30 seconds; and a final step at 72˚C for

5 minutes. The resulting amplicons were used to construct a metagenomic library using a Nex-

tera DNA Library Preparation Kit from Illumina1. The amplicons were pooled and sequenced

on an Illumina1MiSeq sequencer [21].

Animals that were deemed unfit for treatment and recovery due to health or injury reasons,

as determined by a veterinarian, and were therefore unable to remain in the study, were eutha-

nized. Euthanasia was performed by first desensitizing the animals using the electronarcosis
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procedure (with a minimum current of 1.3A for 3 seconds and a minimum voltage of 240V),

followed by the severing of the vessels in the neck region.

The sequencing reads were analyzed on the QIIME2 platform (Quantitative Insights Into

Microbial Ecology) [22], following a workflow to remove low-quality sequences, filter reads,

Table 1. Composition and nutritional values of the diets used in the treatments according to the feeding phases.

Ingredients (%) Phases

Prestarter I Prestarter II Starter I Starter II

Corn (7.5%) 15.434 29.873 38.612 59.725

Soybean meal (45.0%) 20.710 22.462 29.011 31.930

Extruded corn 35.000 25.000 15.000 0.000

Milk whey 16.000 12.000 8.000 0.000

Powdered milk 6.000 4.500 2.000 0.000

Soy protein concentrate 2.000 2.000 1.000 0.000

Soybean oil 0.664 0.000 2.393 3.892

Dicalcium phosphate 1.179 1.202 1.421 1.841

Limestone 0.088 0.531 0.539 0.709

HCl lysine (80%) 0.718 0.540 0.446 0.427

L-Threonine (98%) 0.360 0.230 0.207 0.157

DL-Methionine (98%) 0.318 0.262 0.203 0.131

L-Tryptophan (98%) 0.067 0.066 0.056 0.047

L-Valine 0.056 0.164 0.017 0.026

Copper sulfate 0.064 0.062 0.061 0.049

Choline chloride 60% 0.053 0.004 0.000 0.000

Salt 0.477 0.474 0.543 0.577

Zinc oxide 72% Zn 0.401 0.220 0.082 0.081

Butylhydroxytoluene 99% 0.010 0.010 0.010 0.010

Mycotoxin adsorbent 0.150 0.150 0.150 0.150

Vitamin premix 1 0.150 0.150 0.150 0.150

Mineral premix 2 0.100 0.100 0.100 0.100

Total 100.00 100.00 100.00 100.00

Nutrients

Metabolizable energy, Kcal/kg 3450 3400 3400 3400

Crude protein, % 18.50 19.00 19.80 19.50

Crude fat, % 5.05 3.37 5.47 6.44

Crude fiber, % 2.65 2.85 3.19 3.47

Calcium, % 0.55 0.69 0.70 0.80

Phosphorus available, % 0.45 0.40 0.42 0.42

Digestible lysine, % 1.44 1.33 1.30 1.24

Digestible meth + cys, % 0.85 0.81 0.78 0.70

Digestible threonine, % 0.94 0.85 0.85 0.79

Digestible tryptophan, % 0.25 0.24 0.25 0.23

Digestible valine, % 0.75 0.89 0.82 0.84

Sodium, % 0.35 0.30 0.30 0.25

Chlorine, % 0.82 0.70 0.61 0.47

1Vitamin premix (levels per kg of product) included the following: vitamin A: 6,000 IU; vitamin D3: 1,500 IU; vitamin E: 15,000 mg; vitamin K3: 1,500 mg; vitamin B1:

1,350 mg; vitamin B2: 4,000 mg; vitamin B6: 2,000 mg; vitamin B12: 20 mg; niacin: 20,000 mg; pantothenic acid: 9,350 mg; folic acid: 600 mg; and biotin: 80 mg.
2Mineral premix (levels per kg of product) included the following: iron: 100 mg; copper: 10 mg; manganese: 40 g; cobalt: 1,000 mg; zinc: 100 mg; iodine: 1,500 mg; and

selenium: 300 mg.

https://doi.org/10.1371/journal.pone.0313475.t001
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remove chimeras, a perform taxonomic classification. Sequences were classified as bacterial

genera on the basis of amplicon sequence variants (ASVs) determined based on homology

compared to a database. This analysis was performed with the 2021 version (GTDB release

202) of the Genomic Taxonomy Database for ribosomal sequences [23]. To classify bacterial

communities by identifying ASVs, a total of 16,633 reads per sample was used to normalize the

data and prevent comparison of samples with varying read numbers.

The normality of the distribution of the data was analyzed using the Kolmogorov–Smirnov

& Lilliefors test and the Shapiro–Wilk W test (p>0.05). The Box & Whisker package was used

to remove outliers. Normally distributed data were subjected to analysis of variance (ANOVA)

using a general linear model (GLM), with the model considering block and treatment effects.

The means from this analysis were further evaluated using Tukey’s test. Both analyses were

performed using Statistics for Windows1 software, version 10.0 [24]. For the test results, a p-

value equal to or less than 0.05 was considered to indicate significance, and a p-value between

0.05 and 0.10 was considered to indicate a trend.

Immunity parameters were analyzed using GraphPad Prism version 8; Gaussian-distrib-

uted data were subjected to one-way ANOVA with Tukey’s multiple comparisons post-test,

while non-Gaussian data were subjected to the Kruskal–Wallis test, followed by Dunn’s multi-

ple comparisons post-test. For the fecal microbiota analyses, statistical comparisons of alpha

diversity among each analyzed group were conducted using the nonparametric Kruskal–Wal-

lis test and Dunn’s post hoc test, with results deemed statistically significant at p-values less

than 0.05. Beta diversity statistical analysis was performed using Permutational Multivariate

Analysis of Variance in the QIIME2 pipeline, with 10,000 permutations. Alpha diversities were

calculated using "phyloseq" [25], "vegan" [26], and the "microbiome" library [27]. Differences

in the relative abundance of taxa between groups were estimated using the Kruskal–Wallis test

and Dunn’s post hoc test.

Results

During the prestarter I (21 to 28 days of age) and prestarter II (29 to 35 days of age) phases,

there were no differences in zootechnical performance among treatment groups (Table 2;

p>0.05). In the starter I phase (36 to 42 days of age), the CONT+ group (0.276 g) showed

greater (p = 0.012) DWG than did the SIM+ (0.214 g) and SIM- (0.237 g) treatment groups,

while the PREB treatment group (0.245 g) did not differ from the other groups, presenting an

intermediate value. In the starter I phase, the feed conversion ratio (FCR) was lowest in the

CONT+ group (1.600), indicating better efficiency (p = 0.020). Higher FCRs, reflecting less

efficient feed conversion, were observed in the SIM+ (1.985), PREB (1.795), and SIM- (1.773)

groups, with no significant differences between these treatment groups. In the starter II phase

(43 to 63 days of age), the CONT+ group (1.532) tended to have a greater FCR (p = 0.096)

than the SIM- group (1.648), with no differences found for the PREB and SIM+ groups com-

pared to the other treatment groups. No differences were detected for the other parameters in

this phase among treatments.

Throughout the entire experimental period, from 21 to 63 days of age, a difference was

observed only in the FCR (p = 0.0076). The CONT+ (1.543) and PREB (1.585) groups exhib-

ited the best results, with no significant difference between them, while the SIM- (1.654) treat-

ment group had the poorest outcome.

Regarding the number of animals with diarrhea and the diarrhea index (Table 3) through-

out the experimental period, differences were observed for score 2 (p = 0.010), where animals

in the CONT+ (n = 19) and SIM+ (n = 18) groups exhibited 35.71% and 28.57% more diar-

rhea, respectively, compared to those in the SIM- (n = 14) group, with the PREB (n = 16)
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Table 2. Mean Live Weight (LW), Daily Weight Gain (DWG), Daily Feed Intake (DFI) and Feed Conversion Ratio (FCR) of piglets in the weaning phases provided

diets containing prebiotics and multispecies probiotics.

Parameters Treatments CV (%) p-value

CONT+ PREB SIM + SIM -

Prestarter I (21–28 d)

LW21d (kg) 5.555 5.757 5.500 5.521 16.96 0.952

DFI (kg) 0.129 0.125 0.132 0.137 17.57 0.848

DWG (kg) 0.082 0.068 0.070 0.070 42.78 0.926

FCR 1.669 1.958 2.060 2.125 29.71 0.740

Prestarter II (29–35 d)

LW29d (kg) 5.761 6.104 5.801 5.905 14.42 0.868

DFI (kg) 0.285 0.309 0.300 0.294 14.80 0.754

DWG (kg) 0.216 0.233 0.223 0.207 21.34 0.740

FCR 1.326 1.347 1.377 1.452 14.11 0.597

Starter I (36–42 d)

LW36 (kg) 7.277 7.740 7.363 7.356 13.53 0.818

DFI (kg) 0.435 0.438 0.417 0.416 12.02 0.761

DWG (kg) 0.276a 0.245ab 0.214b 0.237b 14.22 0.012

FCR 1.600a 1.795ab 1.985b 1.773ab 12.60 0.020

Starter II (42–63 d)

LW42 (kg) 9.213 9.457 8.862 9.016 11.84 0.738

DFI (kg) 0.838 0.845 0.800 0.812 9.19 0.607

DWG (kg) 0.546 0.539 0.505 0.495 9.65 0.144

FCR 1.532a 1.568ab 1.589ab 1.648b 5.63 0.097

LW63 (kg) 20.685 20.796 19.472 19.415 9.83 0.362

Total (21–63 d)

DFI (kg) 0.556 0.567 0.539 0.545 9.20 0.731

DWG (kg) 0.360 0.358 0.332 0.330 9.23 0.150

FCR 1.543a 1.585ab 1.625bc 1.654c 3.79 0.008

a, b, c Different letters in the rows indicate a significant difference as determined by the Tukey test (p<0.05) or trend (p<0.10). CONT+ (200 g halquinol/ton of feed);

PREB (1,000 g prebiotic/ton of feed); SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic + 300 g probiotic/ton of feed).

https://doi.org/10.1371/journal.pone.0313475.t002

Table 3. Number of piglets with diarrhea and diarrhea indices according to experimental treatments.

Score Treatments p-value

CONT+ PREB SIM + SIM -

Score 1 (n) 1 0 0 0 0.4015

Score 2 (n) 19a 16ab 18a 14b 0.0100

Score 3 (n) 17ab 22a 16ab 15b 0.0100

Score 2 + 3 (n) 36a 38a 34ab 29b 0.0100

Diarrhea index 0.018 0.019 0.017 0.015 -

Observations (n) 2000 1971 1985 1949 -

a - b Different letters in the rows indicate differences according to the GLM with Tukey’s post hoc test (p�0.05). CONT+ (200 g halquinol/ton of feed); PREB (1,000 g

prebiotic/ton of feed); SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic + 300 g probiotic/ton of feed).

https://doi.org/10.1371/journal.pone.0313475.t003
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treatment group being intermediate, showing 14.28% more diarrhea. For score 3, there were

46.66% more piglets in the PREB group (n = 22) than in the SIM- treatment group (n = 15),

while 13.33% and 6.66% more piglets in the CONT+ (n = 17) and SIM+ (n = 16) groups expe-

rienced diarrhea, respectively, than in the SIM- group (n = 15). For scores 2 and 3 combined,

there was a greater percentage of animals in the CONT+ (n = 36) and PREB (n = 38) groups

(p = 0.010) than in the SIM- (n = 29) treatment group (24.13% and 31.06%, respectively), with

the SIM+ (n = 34) group showing a 17.24% greater incidence.

For the majority of the 9 serum cytokines quantified at the two ages (Table 4), no difference

was detected among treatments, with the exceptions being the level of IL-10 (at 35 days of

age), which was 271.25% greater in the SIM- group than in the other treatment groups, and

the level of IL-8 (at 49 days of age), which was lower (-247%) in the PREB group than in the

CONT+ group, while the SIMB+ and SIMB- groups did not differ from the others.

According to the analysis of the intestinal microbiota, the SIM- treatment resulted in

greater richness and uniformity of the microbial community than the other treatments, differ-

ing from the CONT+ and PREB treatments in terms of Chao1, observed OTUs, and Fisher’s

metrics (Fig 1A–1C), from the SIM+ treatment in terms of Pielou’s evenness metric (Fig 1F),

and from the PREB treatment in terms of the Simpson and Shannon metrics (Fig 1D and 1E).

For beta diversity (Fig 2), a difference in the disparity of taxa present in the CONT+ group

was observed, which differed from that in the PREB and SIM+ treatment, as determined on

the basis of the abundance and phylogenetic relationships among taxa according to the Bray–

Curtis, Jaccard, and weighted UniFrac parameters (Fig 2A, 2B and 2D). In terms of the phylo-

genetic relationships among taxa according to the Bray–Curtis, Jaccard, and weighted UniFrac

indices, the PREB, SIM+, and SIM- treatment groups did not differ from each other. There

were differences between the CONT+ and SIM- groups according to the Jaccard, unweighted

UniFrac, and weighted UniFrac metrics (Fig 2B and 2C). The PREB treatment showed differ-

ences compared to the SIM+ and SIM- treatment groups in the UniFrac metric, and the

CONT+ group differed from the SIM+ treatment group (Fig 2C).

Regarding the composition of the bacterial community, the most abundant phyla were Fir-
micutes, Bacteroidetes, Actinobacteria, and Proteobacteria. The Firmicutes/Bacteroidetes (F/B)

ratio (Fig 3) in the CONT+ group was lower than that in the PREB, SIM+, and SIM- treatment

groups.

Regarding relative abundance, differences (p<0.05) were observed for the family Acutalibac-
teraceae, with a distinction between the CONT+ group and the SIM+ and SIM- groups (Fig

4A), showing a lower abundance of this family in the PREB group. The family Atopobiaceae dif-

fered in abundance between the CONT+ group and the PREB and SIM+ groups (Fig 4B),

exhibiting a lower abundance in the PREB and SIM+ groups. The abundance of the Lactobacil-
laceae family differed between the CONT+ group and the PREB, SIM+, and SIM- groups (Fig

4C), with the highest abundance in the SIM+ group, followed by the SIM- and PREB groups.

The abundance of the genera Bulleidia differed between the PREB and SIM+ groups (Fig

5A), and the abundance of Lactobacillus differed between the CONT+ group and the PREB,

SIM+, and SIM- groups (Fig 5B), with a higher abundance in the SIM+ group, followed by the

PREB and SIM- groups. The abundance of the genus Limosilactobacillus decreased in the

CONT+ group compared with that in the PREB and SIM+ treatment groups (Fig 5C); con-

versely, the abundance of the genus Olsenella increased in the CONT+ group compared with

that in the PREB and SIM+ treatment groups (Fig 5D).
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Discussion

Piglets receiving the prebiotic (PREB) demonstrated zootechnical performance similar to that

of CONT+ group piglets, which is consistent with the findings of Silva et al. [28], who evalu-

ated the performance of weaned piglets fed various prebiotic compositions (including man-

nooligosaccharides (MOS) and β-glucans, components of the prebiotic used in this study), and

Ternus et al. [29], who noted equivalent outcomes in nursery weaning-phase piglets given pre-

biotics, compared to those treated with colistin, based on the same principles of this study.

MOS, which is not digested in the upper gastrointestinal tract, is fermented by specific bac-

teria in the colon, leading to the production of regular short-chain fatty acids such as acetate,

propionate, and butyrate, along with other metabolites like lactate, pyruvate, ethanol, and suc-

cinate, as well as gases such as CO2, H2, and CH4 [7,30,31]. This process minimizes the growth

of harmful species such as Bacteroides, Fusobacterium, and Clostridium spp. [32], leading to

reduced diarrhea incidence and improved nutrient utilization and performance.

β-glucans enhance plasma leukocyte and lymphocyte proliferation while reducing TNF-α
concentrations and fecal E. coli numbers in weaned piglets [33,34]. These effects may explain

why the zootechnical performance of the PREB group was similar to that of the halquinol-

treated group (CONT+). Although the final weight gain was similar across all treatments, the

poorer FCRs for the SIM+ and SIM- groups than that for the CONT+ group and for the SIM-

group than for the PREB group suggest that the lower concentration of prebiotics in the SIM

Table 4. Mean values of the concentrations of pro- and anti-inflammatory cytokines in piglets fed the experimental treatments at 35 and 49 days of age.

Treatments C.V. (%) p-value

CONT+ PREB SIM+ SIM-

35 d of age

IL-1β (pg/mL) 6.960 3.846 16.35 17.86 73.83 0.0799

IL-4 (pg/mL) 1.787 0.9883 2.194 2.243 64.58 0.1498

IL-6 (pg/mL) 3.775 3.737 3.768 2.899 99.33 0.3666

IL-8 (pg/mL) 2.515 2.515 2.597 2.515 216.44 0.3430

IL-10 (pg/mL) 2.832b 2.832b 2.832b 7.682a 119.78 0.0125

IL-12p40 (pg/mL) 415.8 273.4 273.3 361.3 84.60 0.9466

IFN-α (pg/mL) 0.9524 0.6063 0.8284 1.124 209.24 0.7359

IFN-U (pg/mL) 2.368 2.368 2.368 2.368 0.00 1.0000

TNF-α (pg/mL) 3.381 3.381 3.381 3.381 0.00 1.0000

49 d of age

IL-1β (pg/mL) 7.876 4.532 7.013 5.303 146.65 0.4916

IL-4 (pg/mL) 1.029 1.152 0.9748 1.029 79.03 0.9337

IL-6 (pg/mL) 3.488 3.784 3.775 3.748 29.03 0.5398

IL-8 (pg/mL) 4.624a 1.872b 2.058ab 2.515ab 53.94 0.0261

IL-10 (pg/mL) 2.832 2.832 9.862 9.918 109.42 0.0952

IL-12p40 (pg/mL) 488.1 300.1 257.7 283.5 64.80 0.4882

IFN-α (pg/mL) 0.5153 0.5780 1.353 0.4276 86.36 0.2098

IFN-U (pg/mL) 2.368 2.368 2.368 2.368 0.00 1.0000

TNF-α (pg/mL) 3.381 3.381 3.381 3.381 0.00 1.0000

a - b Different letters in the rows indicate a difference according to the Kruskal–Wallis test (p<0.05), with Dunn’s post hoc test. CONT+ (200 g halquinol/ton of feed);

PREB (1,000 g prebiotic/ton of feed); SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic + 300 g probiotic/ton of feed). C.V.: coefficient of

variation.

https://doi.org/10.1371/journal.pone.0313475.t004
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+ and SIM- treatments relative to the dose used in the PREB group, even when combined with

a multispecies probiotic, may limit the enhancement of feed conversion efficiency.

Prebiotics, indigestible compounds metabolized by the gut microbiota [35], modulate the

nonpathogenic flora [36], suggesting dose-dependent effects. Due to their specific affinity,

mannan oligosaccharides (MOSs) can agglutinate pathogens with type 1 fimbriae (e.g., E. coli
and Salmonella), preventing their adhesion to the intestinal wall and leading to their excretion

[37]. At doses lower than those used in the PREB treatment, the SIM+ and SIM- treatments

may have induced less intense pathogen agglutination.

Conversely, the inclusion of a multispecies probiotic in the SIM+ and SIM- treatments

might have contributed to the similarity of the weight gain observed across treatment groups

by enhancing intestinal epithelium integrity and increasing villus height and crypt depth,

thereby expanding the nutrient absorption surface [38], and boosting mucus secretion, which

strengthens the intestinal barrier [39]. According to Kodali et al., the presence of Bacillus coa-
gulans in animals subjected to SIM+ and SIM- treatments is associated with increased total

antioxidant capacity and enzymatic antioxidant activity, as well as the production of extracel-

lular polysaccharides with antioxidant activity [40]. This results in reduced malondialdehyde

concentrations in the intestines of weaned piglets and protection against oxidative damage.

These properties could account for the similar weight gain and final weight indices observed

across all treatments. Similar diarrhea indices between the CONT+ and PREB group and a

lower incidence in the SIM- group, particularly compared to that in the CONT+ group, can be

attributed to improved intestinal integrity and digestive and absorptive functions following

weaning, which are effects mediated by MOS.

Our findings align with those of Silva et al. [41] and Zhao et al. [42], who reported reduced

diarrhea incidence in piglets fed MOS-containing diets compared to that in piglets fed diets

without MOS. However, the advantages observed, especially for the SIM- group, which had

diarrhea scores of 2 and 3, and the similarity of the results for the SIM+ group to the CONT

Fig 1. Alpha Diversity Estimated by the Parameters Chao 1 (A), Observed OTUs (B), Fisher (C), Simpson Index (D),

Shannon Entropy (E), and Pielou’s Evenness (F). Statistical comparisons between results with different treatments

were conducted using the nonparametric Kruskal–Wallis test and Dunn’s post hoc test. The differences in results with

statistical values less than 0.05 were considered significant. CONT+ (200 g halquinol/ton of feed); PREB (1,000 g

prebiotic/ton of feed); SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic + 300 g probiotic/

ton of feed).

https://doi.org/10.1371/journal.pone.0313475.g001
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+ group may also be explained by the additional contribution of the probiotic in these

treatments.

The synergistic combination of prebiotics and probiotics enhances probiotic stability and

survival in the gastrointestinal tract [43]. Prebiotics boost the resilience of probiotic strains by

enhancing bacterial adhesion properties and stimulating the activity of preexisting and probi-

otic species, such as lactobacilli, bacilli, and bifidobacteria. These beneficial microbes compete

for adhesion sites on the cellular epithelium, thereby inhibiting pathogenic bacterial coloniza-

tion [44].

Additionally, this combination promotes intestinal motility, mineral absorption, ammonia

removal, and immune system stimulation [45], and Aperce et al. [46] highlighted immunosti-

mulation by Bacillus licheniformis and Bacillus subtilis. Probiotics also enhance mucus produc-

tion, reducing the interaction between bacteria and the epithelial barrier [47,48]. The absence

of differences in most proinflammatory cytokines at both evaluated ages indicates that the ani-

mals were not subjected to a significant infectious challenge. However, at 35 days of age, the

level of the cytokine IL-10 increased in the SIM- treatment. IL-10, a key anti-inflammatory

mediator linked to prebiotic activity, plays protects the host against pathogens [49].

β-glucans, whose primary receptor Dectin-1 is associated mainly with protein ligands [50],

are involved in signaling that induces IL-10 production and respiratory bursts in neutrophils.

The lower incidence of diarrhea in the SIM- group correlates with the elevated IL-10 level,

which can be attributed to the prebiotic function of additives containing β-glucan.

Fig 2. Beta Diversity Estimated by the Bray–Curtis (A), Jaccard (B), Unweighted UniFrac (C) and Weighted UniFrac

(D) Parameters. Colored ellipses were added automatically via the ggforce library in R. CONT+ (200 g halquinol/ton of

feed), PREB (1,000 g prebiotic/ton of feed), SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic

+ 300 g probiotic/ton of feed).

https://doi.org/10.1371/journal.pone.0313475.g002
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Prebiotics modulate the immune system by regulating anti-inflammatory cytokine levels

[51,52], with some secondary metabolites from their fermentation by probiotic bacteria stimu-

lating the production of IL-10 and other anti-inflammatory markers [53]. This finding

Fig 3. Relationships between Firmicutes and Bacteroidetes taxa in the groups tested. Differences with p-values less

than 0.05 were considered significant. CONT+ (200 g halquinol/ton of feed); PREB (1,000 g prebiotic/ton of feed); SIM

+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic + 300 g probiotic/ton of feed).

https://doi.org/10.1371/journal.pone.0313475.g003

Fig 4. Differential Abundance of the Families Acutalibacteraceae (A), Atopobiaceae (B) and Lactobacillaceae (C).

Statistical comparisons between groups were performed using the nonparametric Kruskal–Wallis test and the Dunn

post hoc test. A value less than 0.05 was considered to indicate statistical significance. CONT+ (200 g halquinol/ton of

feed); PREB (1,000 g prebiotic/ton of feed); SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic

+ 300 g probiotic/ton of feed).

https://doi.org/10.1371/journal.pone.0313475.g004
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indicates that the increase in IL-10 production induced by symbiosis is due to various path-

ways regulating the expression and production of this anti-inflammatory cytokine. IL-10 can

control the duration and intensity of the inflammatory response by inhibiting the production

of proinflammatory cytokines such as IL-12p40 [54–57]. The elevated IL-10 levels in the SIM-

treatment suggest an anti-inflammatory response to an infectious challenge during the first

two weeks of the trial, as evidenced by reduced diarrhea incidence, and a response to a higher

concentration of IL-12p40 during this period.

At 49 days of age (28 days post-weaning), the concentration of the cytokine IL-8 was ele-

vated in the SIM- group. This proinflammatory cytokine recruits and activates effector cells of

the innate immune response, a phenomenon that can be linked to the function of prebiotics in

PREB treatment. IL-8, also known as neutrophil-activating protein-1 (NAP-1), promotes the

release of neutrophil granules. Like various chemotactic agents, IL-8 triggers cytoskeletal reor-

ganization, changes in intracellular Ca2+ levels, integrin activation, granular protein exocytosis,

and respiratory bursts. This activity highlights the value of PREB treatment, indicating the cen-

tral role of cytokines in immune cell responses and tissue integrity maintenance. Changes in

the cytokine network in pig intestines can be expected at weaning [58], aligning with the fact

that adaptations were less pronounced in the PREB treatment than in the CONT+ group.

The alpha diversity results (Fig 1) illustrate variations across treatments, with the SIM-

group exhibiting the highest diversity. Generally, higher diversity levels support the presence

of functionally redundant organisms and greater stability of the intestinal microbiota [59].

Fig 5. Differential Abundance of the Genera Bulleidia (A), Lactobacillus (B), Limosilactobacillus (C) and Olsenella (D).

Statistical comparisons between groups were performed using the nonparametric Kruskal–Wallis test and the Dunn

post hoc test. A value less than 0.05 was considered to indicate statistical significance. CONT+ (200 g halquinol/ton of

feed); PREB (1,000 g prebiotic/ton of feed); SIM+ (500 g prebiotic + 600 g probiotic/ton of feed); SIM- (500 g prebiotic

+ 300 g probiotic/ton of feed).

https://doi.org/10.1371/journal.pone.0313475.g005
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Regarding beta diversity evaluation (Fig 2), the Bray–Curtis, Jaccard, and weighted UniFrac

metrics revealed differences between the PREB and SIM+ group compared to the CONT

+ group. The modulatory effect of added prebiotics and the symbiotic environment of bacterial

populations could explain the observed differences. The SIM- and CONT+ groups also dis-

played significant differences according to Jaccard and weighted UniFrac indices, reflecting

the alpha diversity results found for the SIM- group. In general, specific additives and their

combinations have been shown to enhance intestinal microbial diversity in both poultry and

mammals [60,61]. In this context, Pan et al. [62] studied the intestinal microbiota of pigs fed

diets supplemented with varying doses of xylo-oligosaccharides and found significant differ-

ences between the group that received the highest dose of the prebiotic and the negative con-

trol group.

Regarding the Firmicutes/Bacteroidetes ratio (Fig 3), the CONT+ group had a lower Firmi-
cutes/Bacteroidetes ratio than did the PREB, SIM+, and SIM- treatment groups, which aligns

with the findings of Mulder et al. [63], who, using pigs as a model, reported a strong correla-

tion between the abundance of the Firmicutes phylum and a reduction in the incidence of

infectious, inflammatory, and autoimmune diseases. This finding explains why the incidence

of diarrhea scores 2 and 3 observed for the SIM+ and SIM- treatments did not significantly dif-

fer. In this work, it is possible to observe the high rates of relative abundance reported in the

different groups, and their increase in treatments PREB, SIM+, and SIM- groups. In addition,

the increase in the Firmicutes/Bacteridota ratio promoted by diets rich in fiber already were

previously reported [64].

The decreased abundance of the Lactobacillaceae family, lactic acid-producing bacteria, and

Limosilactobacillus in the CONT+ group compared to the other treatment groups (Figs 4C, 5B

and 5C) underscores their role in intestinal development and integrity. Predominantly found

in the postweaning pig intestinal microbiota [65], the abundance of the genus Lactobacillus
spp., which is more abundant in the SIM+ group, is directly associated with enhanced feed effi-

ciency and weight gain in pigs. This relationship highlights the function of these bacteria in

supporting pig health and growth, as evidenced by the work of Le Sciellour et al. [65], Gardiner

et al. [66], and Trevisi et al. [67], underscoring the impact of microbial populations on animal

nutrition and health outcomes. The genus Limosilactobacillus, characterized by rod-shaped or

coccoid bacteria, produces exopolysaccharides from sucrose that support biofilm formation

on the nonsecretory epithelium in the upper intestinal tract.

Zhang et al. [68] explored the effects of dietary supplementation with Limosilactobacillus
mucosae on pigs and noted improvements in immunological functions and intestinal micro-

biota modulation. Although this study did not pinpoint any Limosilactobacillus species as

solely responsible for modulation of the abundance of this taxon, L. mucosae was the most

abundantly represented species. This finding aligns with the current understanding of the role

of probiotics in enhancing gut health and the immune response.

The Acutalibacteraceae family was more abundant in piglets fed diets supplemented with

prebiotics (SIM+ and SIM-), yet despite being mentioned in several recent studies [68–70],

there is no direct reference regarding its significance to the swine intestinal microbiota. The

Atopobiaceae family, which was most abundant in the CONT+ group and differed in abun-

dance only in the PREB treatment (Fig 4B), also lacks detailed reports about its role in the

swine intestinal microbiota. However, these findings are in line with those of Duarte and Kim

[71], who noted a decrease in the relative abundance of this family in the gastrointestinal tract

of weaning-phase pigs receiving probiotic-supplemented feed. This finding highlights the

nuanced and evolving understanding of microbial interactions within the swine gut, under-

scoring the need for further research into the roles of specific microbial families.
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The modulation of the abundance of this family is directly linked to the relative abundance

of the Olsenella genus, which significantly decreased in both the PREB and SIM+ treatment

groups. However, utilizing a combination of probiotics, Oh et al. [72] reported the opposite

effect, observing an increase in the relative abundance of the genera Olsenella, Catonella, Cate-
nibacterium, and Acidaminococcus. This discrepancy underscores the complex interactions

within the gut microbiota, in which the impact of probiotics can vary markedly depending on

the specific microbial community and the dietary context. Finally, the SIM+ treatment (Fig

5A) resulted in a greater relative abundance of the genus Bulleidia, which belongs to the Firmi-
cutes phylum and whose abundance is positively correlated with the concentration of volatile

fatty acids [73,74]. This characteristic may be leveraged when utilizing symbiotic compound-

based additives, highlighting the potential of symbiotics to enhance beneficial microbial pro-

files and their metabolic outputs in the gut.

Conclusions

The use of prebiotics, whether solely or in combination with probiotics, can serve as a viable

alternative to AGPs. Our findings suggest that higher doses of prebiotics, either used indepen-

dently or with probiotics, effectively improve performance parameters, yielding results compa-

rable to those achieved with AGPs. This approach also promotes better modulation of the

intestinal microbial community, enhancing gut health and animal growth. For industrial appli-

cation, we recommend considering the inclusion of prebiotics such as yeast cell wall compo-

nents in combination with multispecies probiotics in feed formulations. This combination has

shown potential not only for improving growth performance but also for supporting the over-

all health of piglets during the nursery phase, offering a sustainable and health-conscious alter-

native for the swine industry.
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